Resistência de Plantas Daninhas e estratégias de controle para culturas RR (Soja, Milho e Algodão)

Prof. Dr. Pedro J. Christoffoleti – ESALQ Universidade de São Paulo Área de Biologia e Manejo de Plantas Daninhas

"Não é o mais forte das espécies que sobrevive, nem o mais inteligente, mas aquele que é mais responsivo a mudanças"

"As plantas daninhas resistentes a herbicidas são as mais responsivas à ação do herbicida através de sua características biológicas"

Christoffoleti, 2015

1) Agronomicamente

- Rotação de cultivos (evitar a dominância de poucas espécies)
 - redução a densidade do banco de sementes
 - aumento da diversidade das populações de plantas daninhas
 - Integração de sistemas
 - integração lavoura-pecuária
 - sistemas agroflorestais

2) Sistemas de manejo de plantas daninhas

- Diversificação de mecanismos de ação de herbicidas
 - problemas de antagonismo na mistura
 - proibição das misturas em tanque não registradas

3) Ação proativa x ação reativa

- Quem deve dar ênfase na ação proativa ao produtor?
 - Programas de assistência técnica e extensão rural
 - Equipes de vendas/marketing das empresas fabricantes de herbicidas

Ação proativa x ação reativa

Weed Technology. 2005. Volume 19:924-933

Ação reativa

- "Uso da ferramenta até que ela quebre, daí descobre-se uma nova ferramenta e descarta-se a anterior"
- Assume-se que novos mecanismos de ação surgirão no futuro

Ação pró ativa

- ✓ "Evita-se quebrar a ferramenta e então manter sua efetividade de forma preventiva"
- ✓ Existem custos agregados que nem sempre o produtor está disposto a pagar (por exemplo o custo do herbicida residual = em média R\$ 80,00 a 100,00/ha/ano)

Um programa de manejo/prevenção da Resistência de plantas daninhas a herbicidas deve ser:

- √ Efetivo
- ✓ Ampla aceitação
- √ Viável econômica/ambientalmente

Manejo integrado de plantas daninhas

Boa prática agrícola

Sistemas conservacionistas & Manejo/prevenção da Resistência

Manejo conservacionista é a base da agricultura brasileira

"Os herbicidas são fundamentais para a continuidade do plantio direto"

"Esteja sempre a frente das plantas daninhas"

O sucesso do manejo de plantas daninhas em plantio direto é a execução das operação no momento certo "timing"

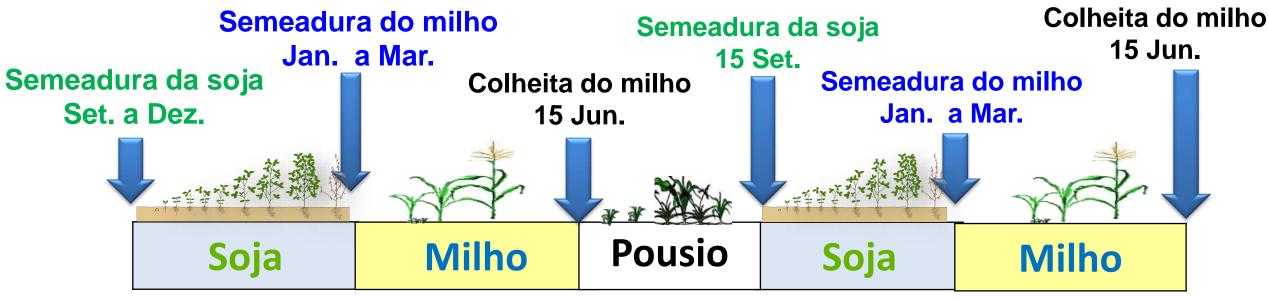
CAST[®] Issue Paper

As plantas daninhas resistentes a herbicidas tem ameaçado o sistema conservacionista de grão no Estados Unidos: Encontrar um equilíbrio de sustentabilidade e manejo da resistência de plantas daninhas a herbicidas é fundamental.

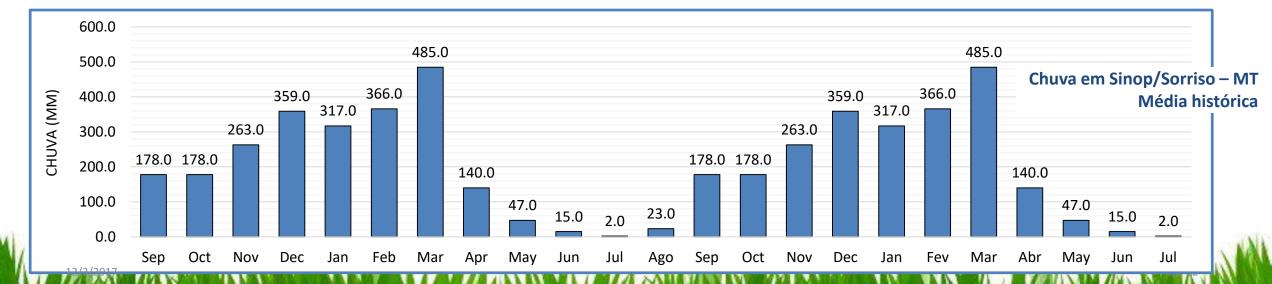
Como se MANEJA (PREVINE) o surgimento da resistência de forma integrada?

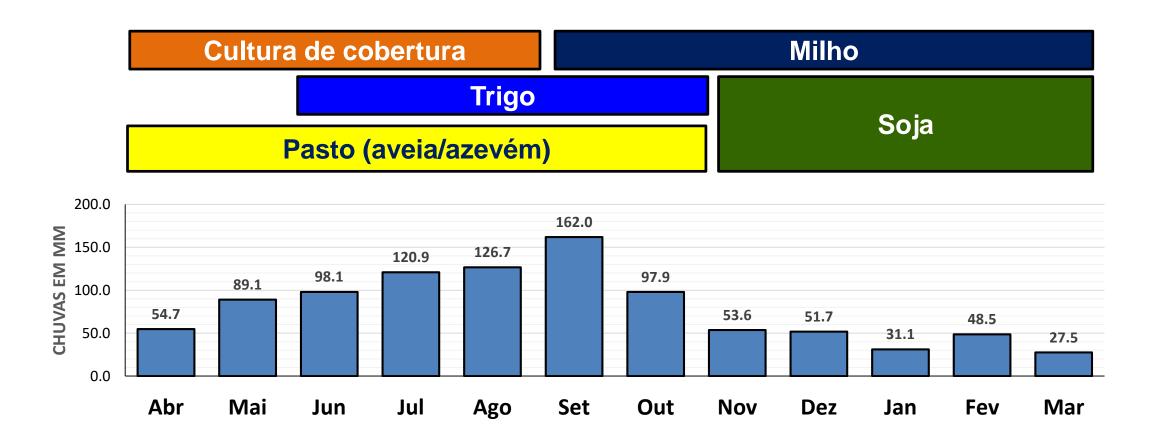
Princípios do manejo integrado de plantas daninhas

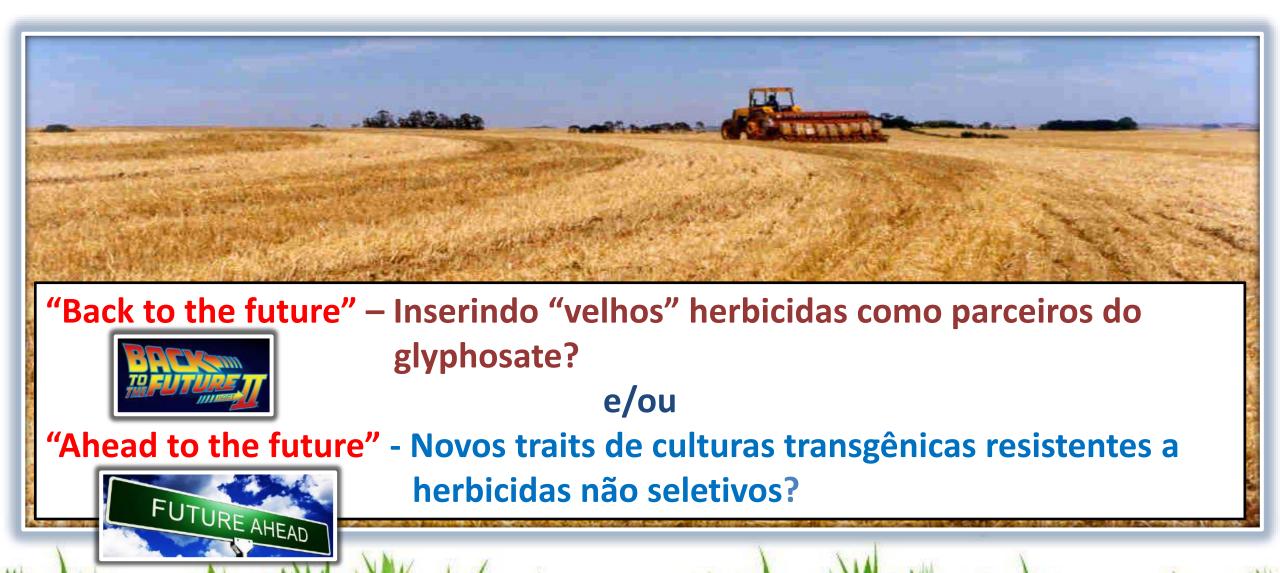
- Rotação de culturas
- · Culturas de cobertura
- Adubação verde
- ·Integração Lavoura-Pecuária
- · Culturas resistentes a herbicidas alternativos
- · Associação herbicidas com diferentes Mec.de ação
- · Uso de herbicidas residuais
- · Sequencia de herbicidas no sistema de produção
- Entendimento do sistema de produção

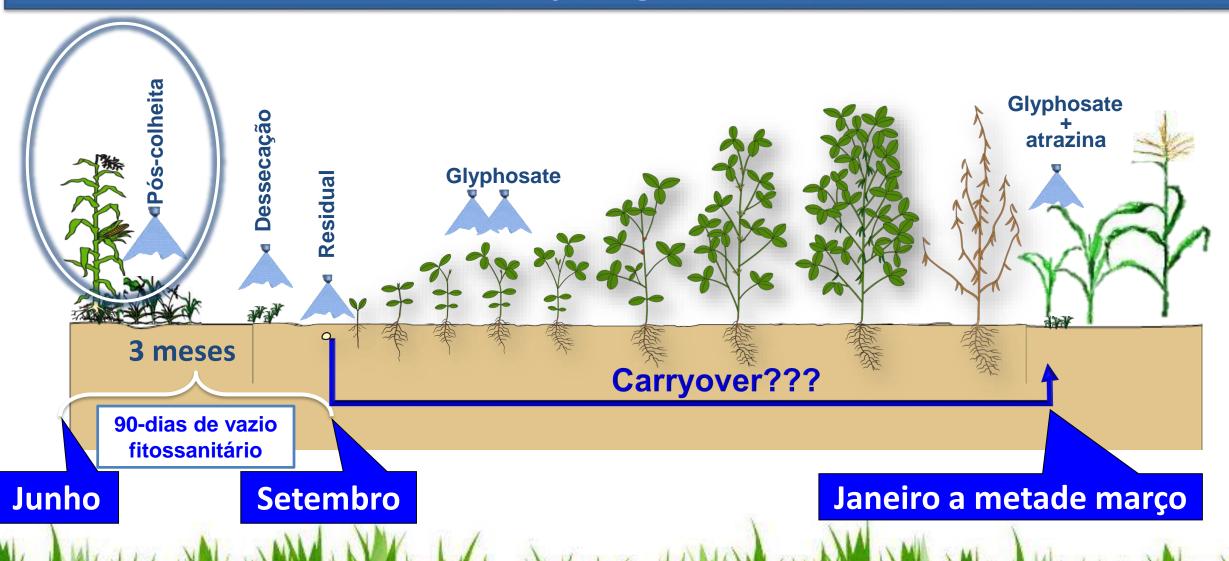

A mensagem para o agricultor é simples: "cultura 'no limpo' com diversidade de herbicidas"

- ✓ Diferentes mecanismos de ação no sistema de produção
- √ Herbicidas residuais para sobreposição de controle
- √"Tolerância zero" sem riscos de altas infestações e perdas de produção
- ✓ Nunca reduzir práticas de manejo de plantas daninhas




Sistemas com duas safras soja/milho no Cerrado

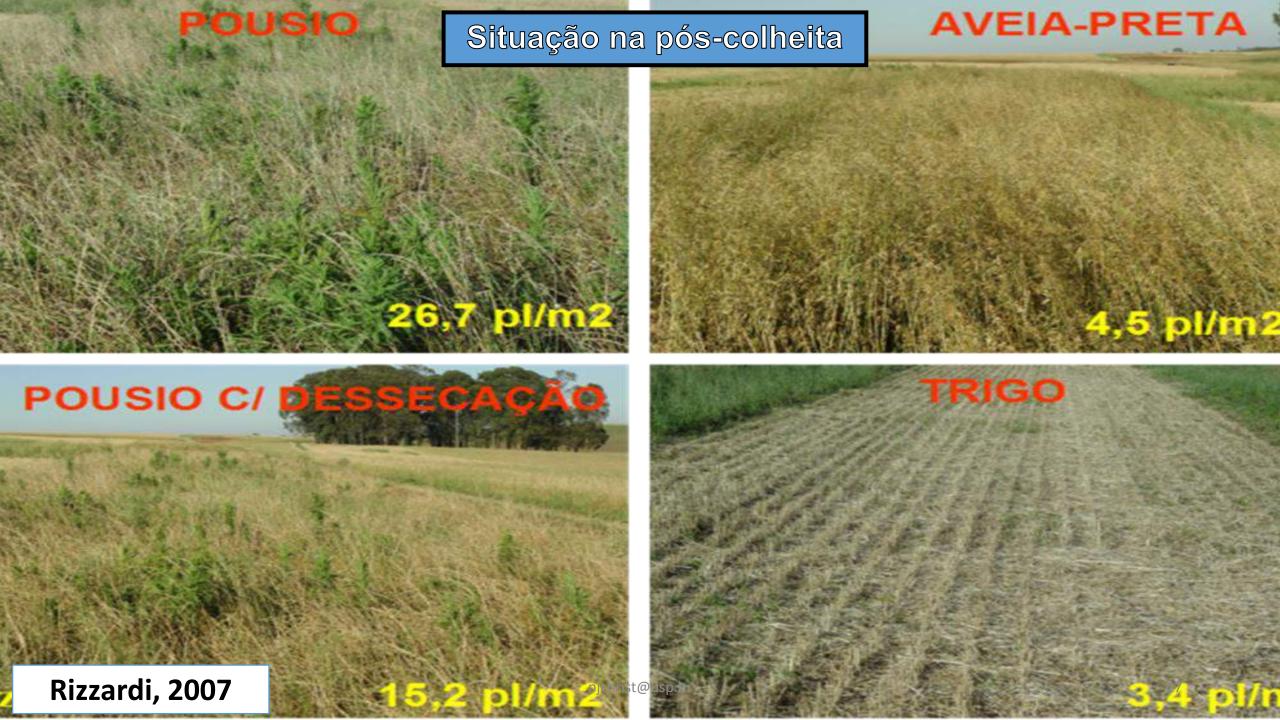

Set. Out. Nov. Dez. Jan. Fev. Mar. Abr. Mai. Jun. Jul. Ago. Set. Out. Nov. Dez. Jan. Fev. Mar. Abr. Mai. Jun. Jul.


Sistemas de cultivo na região Sul do Brasil

Dois enfoques práticos de recomendação

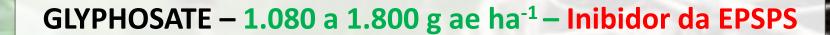
Sequência típica de aplicações de herbicidas em sistemas com duas safras – Soja seguida de Milho

Situação pós colheita do milho Com x Sem cultura de cobertura



Com cultura de cobertura Urophylla spp Baixa infestação de plantas daninhas

/2017

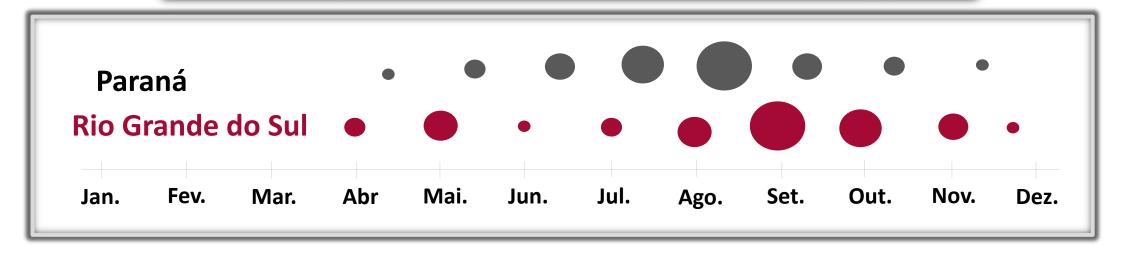

pjchrist@usp.br

16

Conyza resistente ao glyphosate depois do tratamento apenas com glyphosate em pós colheita de milho

"Ferramentas" de manejo da buva – 6 Mecanismos de ação

2,4-D - 1,0 to 1,5 p.c. ha⁻¹ - Análogo das auxinas


Saflufenacil - 50 a 100 g p.c. ha⁻¹ (óleo) – inibidor da Protox

Residual:

Chlorimuron - 100 a 150 g p.c. ha⁻¹ – inibidor da ALS
Flumioxazin - 100 a 120 g p.c. ha⁻¹ – inibidor da Protox
Sulfentrazone – 0,6 a 1,2 L p.c. ha⁻¹ – inibidor da Protox
Diclosulan - 30 a 40 g p.c. ha⁻¹ – Inibidor da ALS
Metribuzin – 0,75 a 1,0 L p.c. ha⁻¹ – Inibidor do FSII

Épocas de emergencia da buva

Encontrando soluções para pós colheita do milho

Glifosate + 2,4-D / Sequential

Glifosate + Flumioxazin +2,4-D / Sequential (Residual)

Glifosate + Chlorimuron / Sequential – Residual

Glifosate + Diclosulan / Sequential Residual

Glifosate + Saflufenacil

Glifosate + 2,4-D / Seq – Sem Residual

Glifosate + flumioxazin +2,4-D / Seq Residual

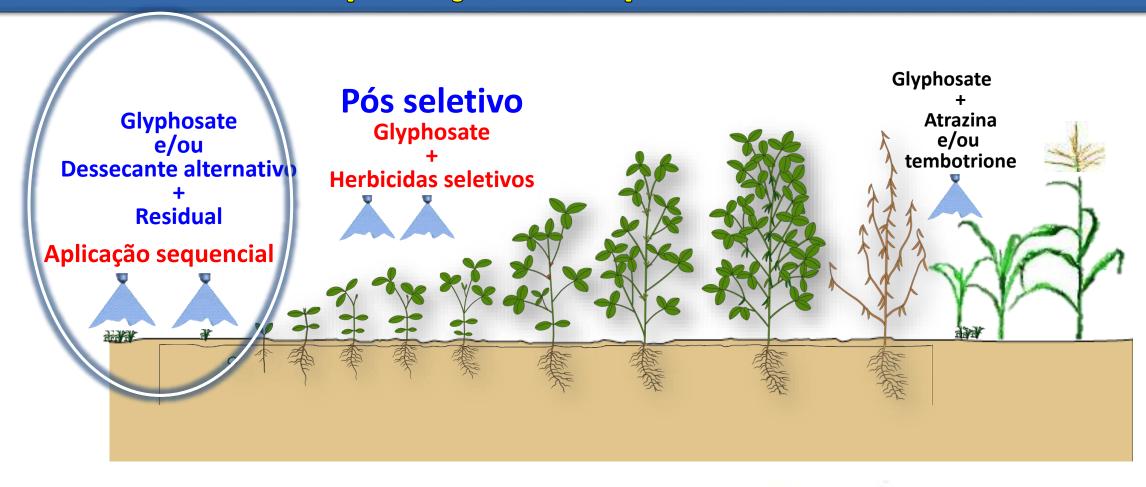
Glifosate + Chlorimuron / Seq (RESIDUAL Rebrotes)

Glifosate + Diclosulan / Seq ou s/ Sequencial Residual

Glifosate + Saflufenacil

Glifosate + 2,4-D / Sequencial

Sequencial + Residuais


Glifosate + Saflufenacil / Glifosato + Saflufenacil

Glyphosate + 2,4-D (3,0 + 1,2 L p.c./ha) – Inibidor da EPSPS + Análogo das auxinas seguido de

Glyphosate + saflufenacil (3,0 + 0,07 L p.c./ha) 10 dias depois da aplicação – inibidor da Protox

Dessecação (herbicida não seletivo) no verão no controle em pré-plantio Aplicações sequenciais

MANEJO DE BUVA

1ª DESSECAÇÃO:

GLYPHOSATE CONTINUA - 1080 a 1800 g e.a. ha⁻¹

Amônio glufosinato - 2,5 L ha⁻¹ (Óleo)

2,4-D - 670 a 1050 g e.a. ha⁻¹

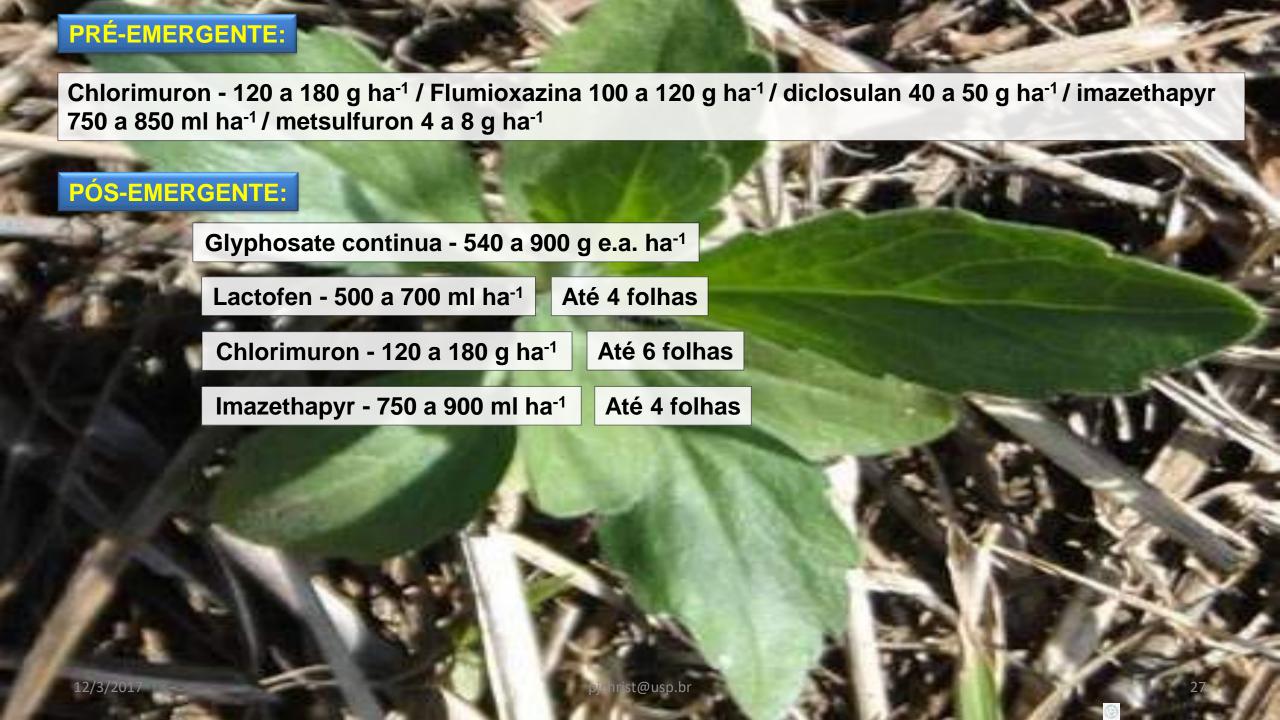
Saflufenacil - 50 a 100 g ha⁻¹ (Óleo)

Residual: Chlorimuron - 100 a 150 g ha⁻¹ / Flumioxazina 100 a 120 g ha⁻¹

2ª DESSECAÇÃO:

GLYPHOSATE OPCIONAL - 720 a 900 g ea ha-1

Amônio glufosinato - 2,5 L ha⁻¹ (Óleo) ESCAPES e REBROTES


Paraquat / Paraquat + diuron / diquat - 2,0 a 3,0 L ha⁻¹ (Óleo)

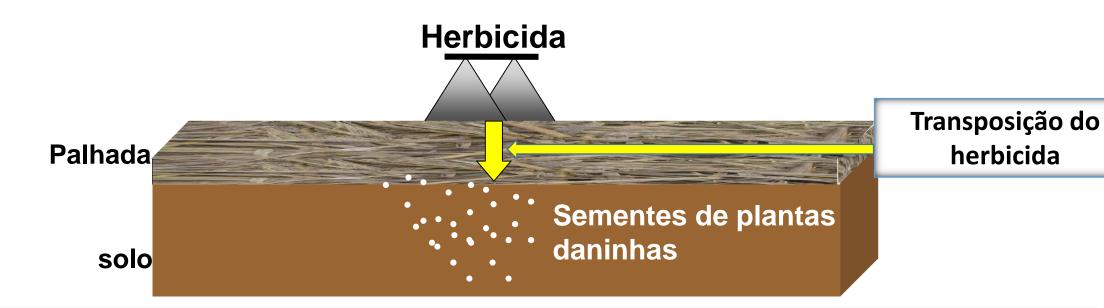
Até 4 folhas

2,4-D - 670 a 1050 g ea ha⁻¹ Até 6 folhas

Saflufenacil - 50 a 100 g ha⁻¹ (Óleo) Maior que 6 folhas

Residual: Chlorimuron - 100 a 150 g ha⁻¹ / Flumioxazina 100 a 120 g ha⁻¹ / diclosulan 40 a 50 g ha⁻¹ / imazethapyr 750 a 850 ml ha⁻¹ / metsulfuron 4 a 8 g ha⁻¹

Importância do herbicida residual nos tratamentos de dessecação


López-Ovejero et al. 2013 – Estudos em cinco locais no Brasil (SP, RS, PR, MG e MT), concluíram que herbicidas residuais seguidos de glyphosate proporciona controle consistente de plantas daninhas reduzindo a matocompetição inicial

Inibidores da ALS – (Grupo B)		Maior residual e espectro de controle, mas pode haver aumento sistemático da resistência (fácil resistência múltipla)
Inibidores da Protox (Grupo E)	flumioxazin	Não há muitos casos de resistência múltipla e ajuda no espectro de controle das plantas daninhas dos inibidores da ALS – alerta sobre a seletividade
Acetanilidas (K3) Inibidores Carotenos (F4/F2) Inibidores do FSII (C1)	I CIAM97ANA/ISAV9TII ITAIA"	Situação de espectro de ervas muito limitado - alerta sobre seletividade

Emergência da soja – 17 dias após tratamento de desecação/10 dias após semeadura

Herbicidas residuais e palhada

Fatores que afetam a transposição do herbicida pela palhada:

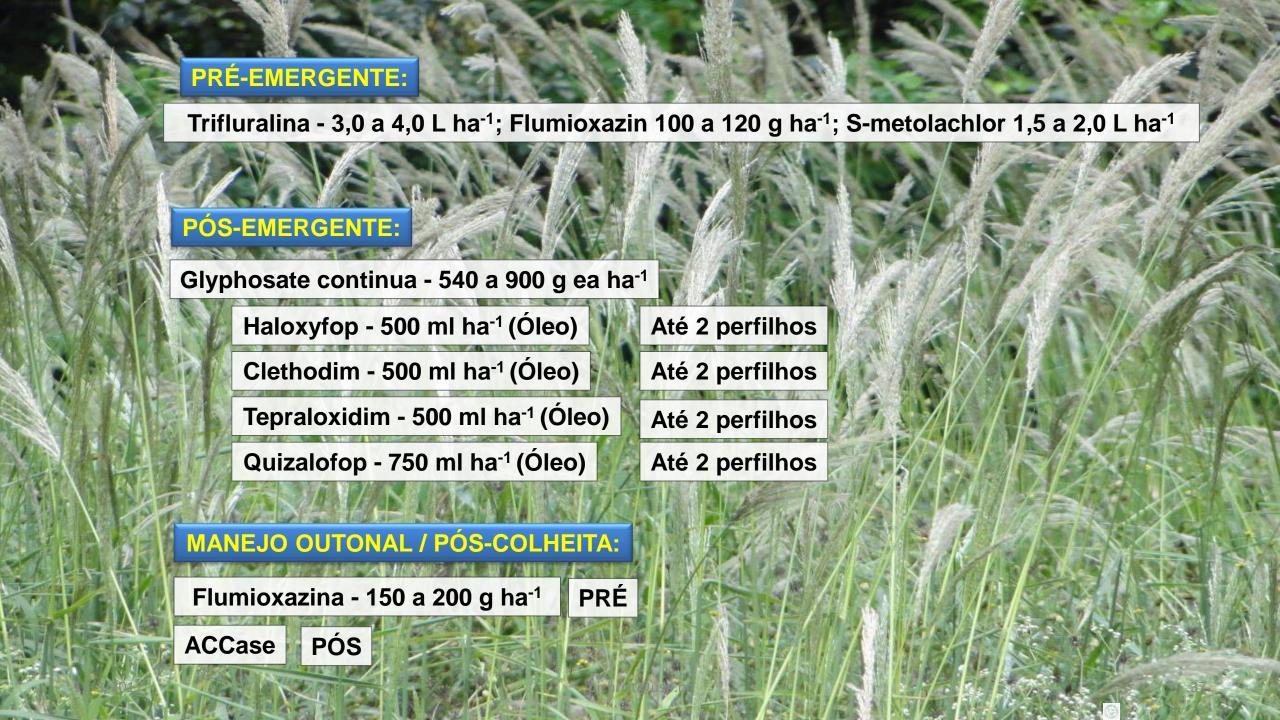
- ✓ Chuva após a aplicação do herbicida
- ✓ Características físico-químicas do herbicida
- ✓ Quantidade de palhada depositada na superfície

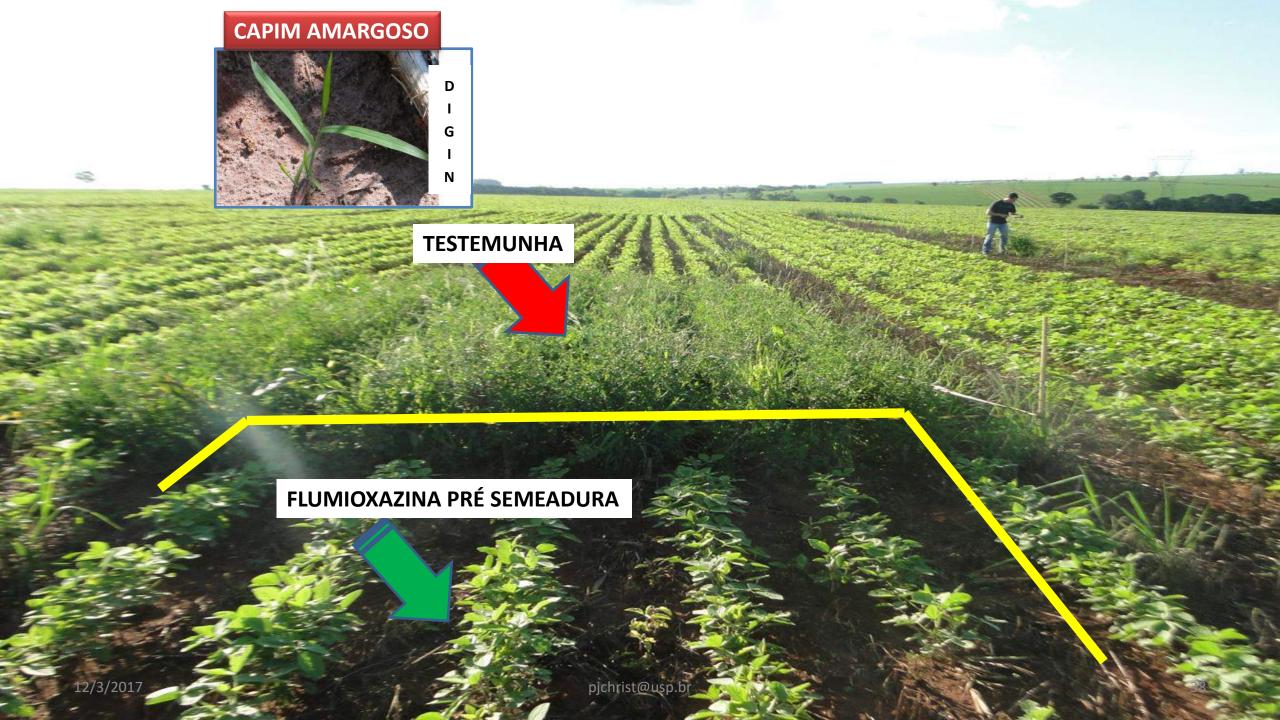
Associação do glyphosate + 2,4-D + FSII, Protox e inibidores da ALS

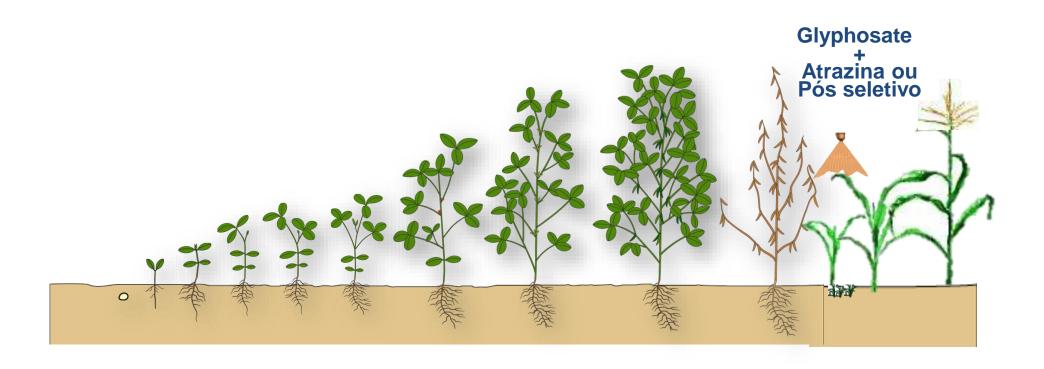
Outono – Glyphosate 1.080 kg ea/ha + 2,4-D 1.008 kg ea/ha + metribuzin 1,0 L/ha
Pré semeadura - verão – Glyphosate seguido Glufosinate 1,0 L/ha + flumioxazin 105 g/ha (10 dias depois semeadura)

Pós semeadura seletivos - Glyphosate 1.080 kg ea/ha – (27 dias após semeadura)

2.1




Consequências para se enfrentar o problema



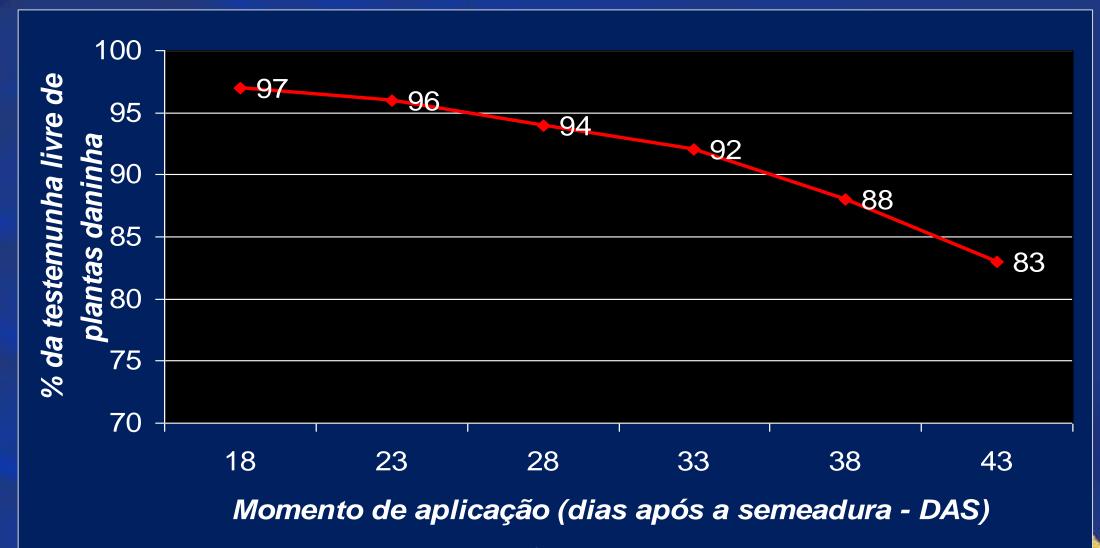
Manejo na cultura do milho segunda safra

Sistemas com cultura sequenciais (duas safras) baseada no plantio no momento adequado da soja e milho (cerrado)

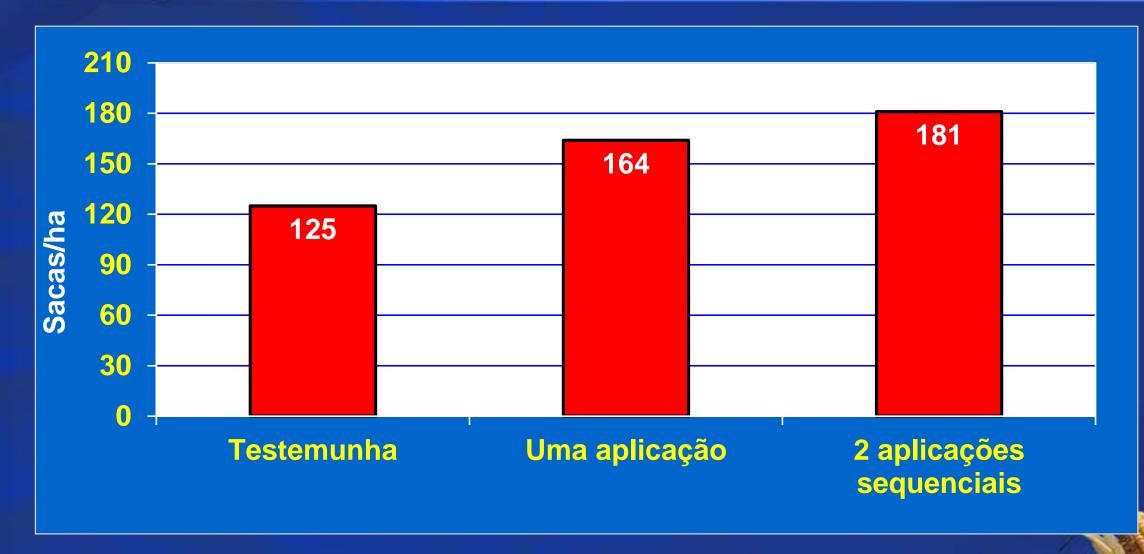
A colheita e semeadura no mesmo momento são práticas comuns em sistemas de duas safras no mesmo ano - culturas sequenciais de soja e milho

pjchrist@usp.br

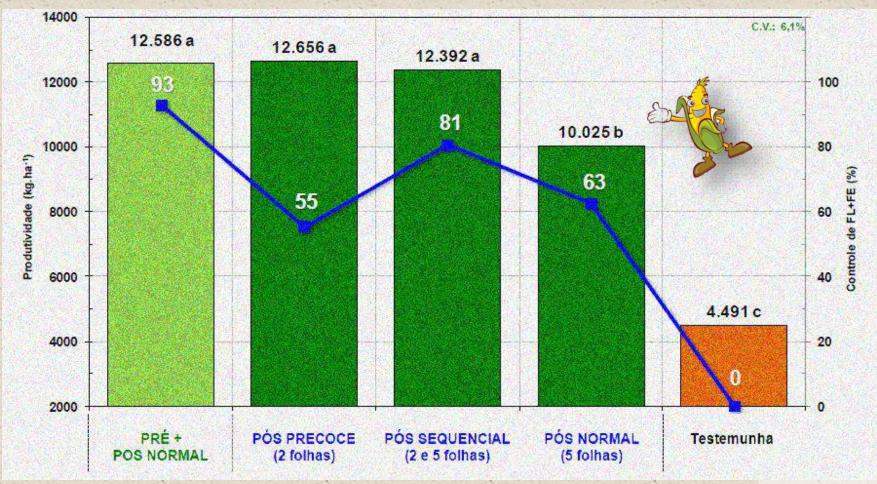
Interferência das plantas daninhas na cultura do milho


12/3/2017

pjchrist@usp.br


Período de matocompetição na cultura do milho

Produção de milho em função do momento de aplicação do glyphosate (média de 35 locais)



Resposta do milho a uma aplicação x aplicação sequencial do glyphosate – média de 7 locais

Porque utilizar a atrazina e aplicações múltiplas

Produtividade do Milho Roundup Ready - Herbicidas Residuais x Glyphosate

Penckowski L.H Podolan & Fernandes, 2011

Como usar o Sistema milho RR?

- Opção 1 Atrazina em pré (ou outro residual) + glyphosate em pós.
- Opção 2 Duas aplicações de glyphosate:
 - ☐ 1ª aplicação: 21-28 DAP + atrazina
 - ☐ 2ª aplicação: 35-40 DAP
- Opção 3 S-metolachlor + glyphosate
- Opção 4 S-metolachlor + atrazina + glyphosate
- Opção 5 mesotrione/tembotrione/nicosulfuron + S-metolachlor + glyphosate

Principais Herbicidas pré-emergentes para a Cultura de Milho (herbicidas residuais seletivos)

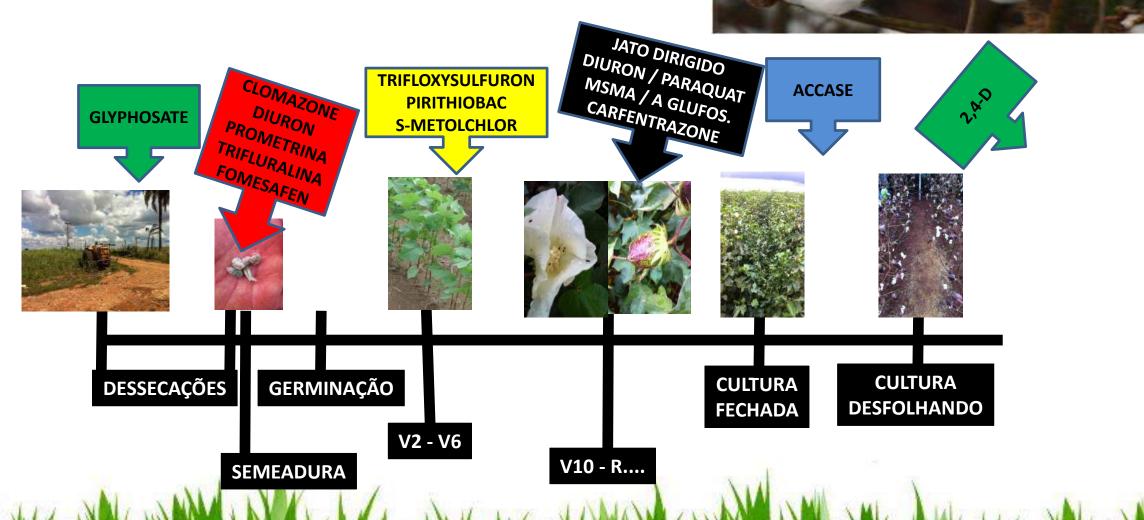
Herbicidas	Formulação (g/L)	Doses (L ou kg/ha)		
Amicarbazone (Dinamic)	700	0,4		
Atrazina + metolachlor (Primextra Gold)	370 + 230	3,3 - 4,5		
Imazapic + imazapyr (On Duty)	525 + 175	0,10		
Isoxaflutole (Provence)	750	0,08		
Pendimethalin (Herbadox)	500	2,0 - 3,5		

Argentina – província Washington

Table 2. Evaluated variables, logistic model parameters, F test, the coefficient of determination (R²) and lethal dose (LD) or growth reduction (GR) for the susceptibility of the biotypes of Amaranths to glyphosate. Machado - MG, 2015

Variable		Parameters				T 22	DL or GR			
	Pmin	a	b	c	F	R²	50	80		
Amaranthus hybridus - Biotype collected in Sao Paulo State - Brazil										
Control	14 DAA		101.505	207.534	-1.826	2754.60*	0.999	204.19	426.14	
	21 DAA		101.700	189.621	-1.980	1029.20*	0.997	186.45	366.49	
	28 DAA		101.138	170.545	-1.701	2284.46*	0.998	168.30	372.95	
Dry weigh	t (%)	4.349	97.595	142.011	2.481	760.59*	0.998	149.60	276.77	
Amaranthus palmeri - Biotype collected in Mato Grosso State - Brazil										
	14 DAA		104.310	1900.068	-1.181	682.16*	0.993	1771.59	5209.45	
Control	21 DAA		104.259	1773.982	-1.189	233.82*	0.979	1656.12	4839.41	
	28 DAA		105.188	1599.662	-1.107	238.58*	0.979	1463.18	4543.73	
Dry weigh	ţ(%)	16.529	86.797	977.986	1.185	144.11*	0.986	1448.85	14294.36	

 $^{^{1}}y = a/(1+(x/b)^{c})$ ou $y = P_{min} + a/(1+(x/b)^{c})$; $^{2}DAA - Days$ after application; * Significant at 1% probability level.

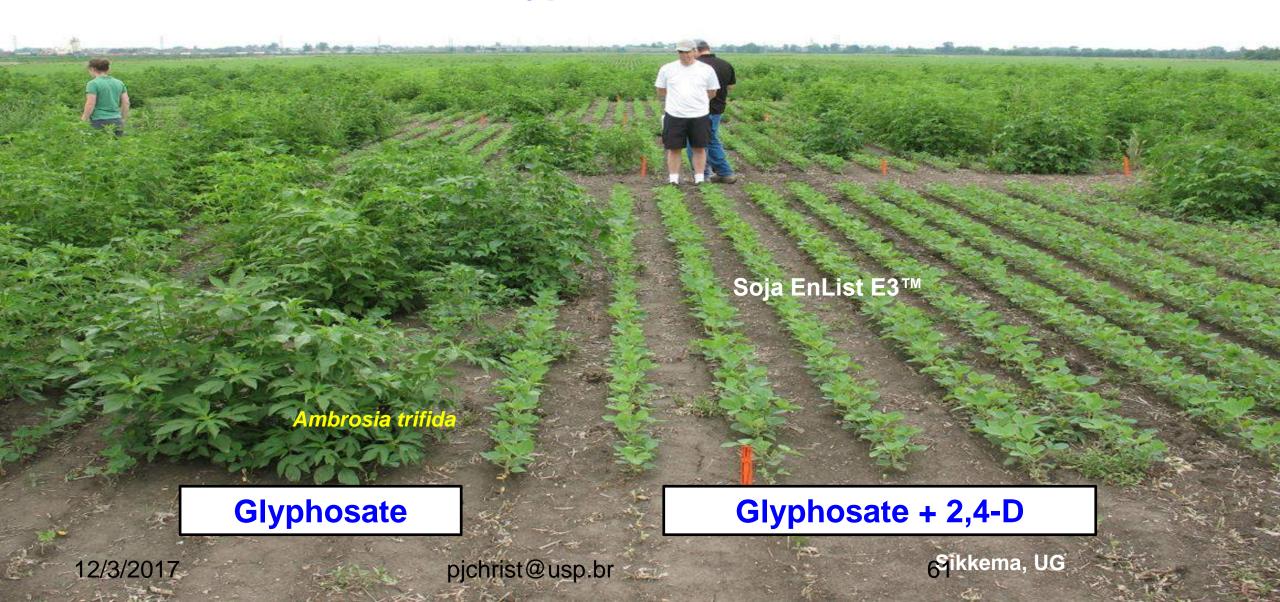

O tamanho é crítico para o funcionamento do glufosinato

2,24 L/ha de glyphosate, seguido de 2,0 L/ha de Liberty no controle do caruru palmer

CICLO RESUMIDO

DIFERENTES ESTRATÉGIAS DE MANEJO DE PLANTAS DANINHAS EM ALGODÃO:

"Novas" tecnologias para o manejo de plantas daninhas


- who B e não transgenicas:

 -ayer resistentes a herbicidas transgenicas e não transgenicas.

 Culturas resistentes a herbicidas transgenicas e não transgenicas e não transgenicas. ✓ Clearfield® – Tolerante a imidazolinone – não transgênico – Grupo B Sete MsdeA de herbicidas estão representados nas culturas ✓ Liberty Link® – LL – Milho, Algodão e Soja – Bayer – Grupo Ḥ ✓ Cultivance – Resistência a imidazolinonas – Grupo B √ Glytol – Resistência ao glyphosate - Bayer ✓ EnlistTM - Dow Agroscience (Enlist **√** Genuity[™] Roundup Rez √ HPPD - Bayer √ Biodi
- control in the early 2000's was as easy as it will ever be"

 carry Steckel Delta Farm Press 2008

Tecnologia EnList E3™ Resistência ao Glyphosate + 2,4-D + Glufosinato

Principais componentes da tecnologia Enlist™

- ✓ Controle seletivo de plantas daninhas folhas largas resistentes e tolerantes ao glifosato
- ✓ O 2,4-D pode ser aplicado como dessecante perto de semeadura conceito "aplique e plante"
- ✓ Nova formulação e sal de 2,4-D colina, com melhorias na redução de deriva e volatilização
- ✓ Herbicidas residuais podem ser associados cm à tecnologia EnList

Principais desafios da tecnologia EnList

- ✓ Na propriedade, manejo dos sistemas de cultivo diversificado
- ✓ Percepção pública negativa de 2,4-D
- ✓ Apesar da formulação e a evolução da tecnologia de sal, deriva e volatilização podem continuar a ser um problema
- Limpeza do depósito do pulverizador
- Resistência de plantas daninhas ao 2,4-D
- ✓ Antagonismo de 2,4-D e glifosato
- ✓ Menos opções para controlar o milho voluntário, no entanto ainda a ciclohexanodionas pode ser usado

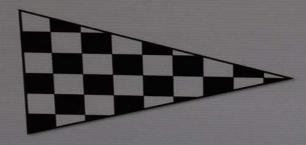
Tecnologia Roundup Xtend da Monsanto, Soja Resistente ao Dicamba (DT – dicamba tolerant)

Principais componentes da tecnologia Roundup Xtend

- ✓ Dicamba não está registrado no Brasil
- √ Gene DMO codificam a enzima dicamba monoxigenase
- ✓ Culturas geneticamente modificadas podem tolerar até 5,0 kg/ha de dicamba

Principais desafios da tecnologia Roundup Xtend

- ✓ Registo de DT pela Monsanto do Brasil está nas fases anteriores
- ✓ Não há muita melhoria na formulação e tecnologia sal
- ✓ Alta solubilidade em água facilitam a lixiviação no solo
- √ Manejo do sistema com viez diversificado
- ✓ Deriva e uma das grandes preocupações no suo dos herbicidas
- ✓ Limpeza do tanque de pulverização


FLAG THE TECHNOLOGY

MONSANTO IS USING B&W CHECKERED FLAGS TO MARK WHERE REGULATED ROUNDUP READY 2 XTEND SOYBEAN FIELDS ARE PLANTED

- Flag uses and benefits:
 - Placed in field locations visible from the ground and air
- Marks the perimeter of regulated areas where no one is allowed to enter for compliance reasons
- Indicates the fields where dicamba can be sprayed
- Identifies fields where Roundup Ready 2 Xtend Soybeans are planted

Pending Regulatory Approvals

12/3/2017

1 Throading II for delications pulpoint and only in the set on allow to put throading Reads 2 Novel - Providing Novel of throadings of the set of the set

Principais componentes da tecnologia tolerante ao HPPD

- ✓ Não está registrado no Brasil
- √ Gene HPPDpf codifica uma HPPD tolerante
- ✓ Isoxaflutole pode ser usado sob condições de seca do solo no ppi e pre
- ✓ Pode estar associada com glifosato, em mistura em tanque com nenhum antagonismo

Grandes desafios da tecnologia HPPD

- ✓ Controle de gramíneas apenas em pré para o isoxaflutole e somente em pós para o mesotrione
- ✓ Necessidade ser associado com inibidor do fotossistema II (FSII), como a atrazina para efeitos sinérgicos

Liberty link technology

Major components of LL

- ✓ The technology developed at the same time as Roundup Ready
- ✓ LL soybean registered since 2010 in Brazil but still not commercialized
- ✓ LL corn registered and commercialized since 2007 in Brazil
- ✓ LL cotton registered and commercialized since 2009 in Brazil
- √ Control "hard to kill" weeds by glyphosate, such as Ipomoea, etc.
- ✓ Control resistant weeds to glyphosate such as Amaranthus, Conyza and Lolium spp

Major challenges of LL

- ✓ Control during the early stages of weed growth
- ✓ Sequential application in cotton in intervals of 14 days many applications
- ✓ Herculex Bt corn limited to one application or two at 200 g/ha
- ✓ Grower have to usen residual therbicide in association

Tecnologia Clearfield

Principais componentes do Clearfield

- √No Brasil há mais de 20 anos
- ✓ Excelente tecnologia para controle de arroz vermelho
- √Não é transgénico, induzida por mutação
- √Usado em milho e arroz

Principais desafios do LL

✓ Transferência de genes de resistência de herbicida de arroz para o arroz vermelho

Tecnologia Cultivance – resistência a imidazolinona

Principais componentes de Cultivance

- ✓ Desenvolvido pela BASF e a Embrapa
- ✓ Única aplicação proporciona controle de gramíneas e de folhas largas durante todo o ciclo da cultura

Principais desafios do Cultivance

✓ Resistência a ALS – estão ainda as "velhas" populações à ALS ainda presentes no campo?

Sistema STS – tolerância a herbicidas do tipo sulfonilureias Principais componentes da soja STS

- ✓ Desenvolvido pela Coodetec "Cooperativa central agrícola"
- ✓ É possível usar doses mais elevadas de sulfoniluréias antes da semeadura de soja
- ✓ Possibilidade de uso em pós seletiva sem fitotoxicidade
- √ Boa opção para controlar buva

Principais desafios da soja STS

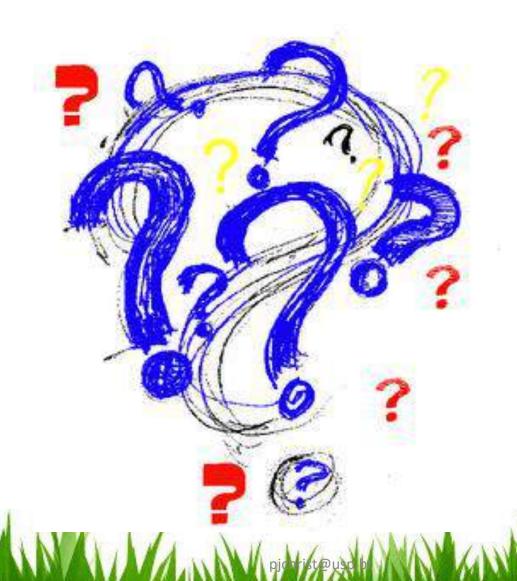
✓ Resistência a ALS – estão ainda as "velhas" populações à ALS ainda presentes no campo?

Como o Biodirecttm funciona:

- √ Sequências específicas de RNA para mRNA.
- Monsanto é usando o grande banco de dados genético para projetar o RNAi
- ✓ RNAi é aplicado com o glifosato
- ✓ Entra na célula vegetal
- √ Combinar com o mRNA das EPSPs
- ✓ Paralisar a expressão e a planta resistente, tornando-se mais suscetíveis

O Destruidor de Sementes Harrington

- Destrói sementes de plantas daninhas na colheita
- Retorna a palhada para o campo
- Não requer mudanças na operação de colheita
- Está sendo adaptado para na colhedeira
- Significativa redução do banco de sementes

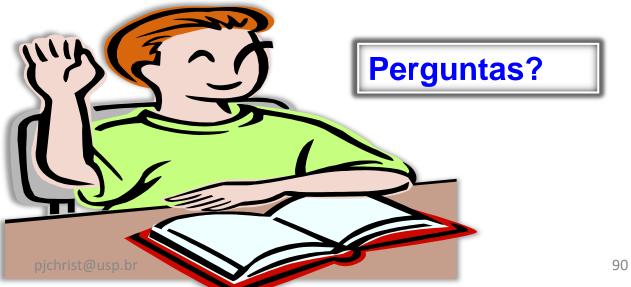

"Principais aprendizados"

"Temos que utilizar todas as ferramentas disponívies"

- ✓ Associações de herbicidas pós emergentes com MsdeA alternativos ao glyphosate − 2,4-D
 (auxina), glufosinato de amônio (GS), saflufenacil (Protox), etc.
- ✓ Sobrepor herbicidas residuais para assim eliminar a matocompetição inicial e inserir no sistema novos MsdeA. Inibidores da ALS (imazethapyr, diclosulan, chlorimuron), Inibidores da Protox, (sulfentrazone, flumioxazin, saflufenacil), Inibidor do crescimento inicial (S-metolachlor), Inibidor da Biossíntese de caroteno (isoxaflutole, mesotrione, tembotrione, clomazone); Inibidores do fotossistema II (metribuzin, atrazine).
- ✓ Não permita escapes de plantas daninhas e produção de sementes. O controle do próximo ano começa agora.
- √ Há necessidade de mais pesquisas sobre as melhores formas de encontrarmos as melhores necessidades do manejo de plantas daninhas resistentes a herbicidas, sem perder o comprometimeto dos objetivos de uma agricultura conservacionista
- ✓ São necessários programas educacionais mais fortes
- ✓ Culturas resistentes a herbicidas alternativos não seletivos— novo MdeA no sistema: As melhores práticas de manejo x ameaça a utilidade dos novos traits: resistência múltipla

Quando você acha que sabe todas as respostas ...
O mundo muda as perguntas ...

Atodos



"O segredo do sucesso é a constância do propósito"

Pedro J. Christoffoleti **ESALQ – USP** pjchrist@usp.br 19 3429 4190 ramal 209 19 99727 8314

